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Goal

m Make use of the rich information in document links
m Improve topic modeling

m Replicate existing links
m Predict held-out links
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Block Detection

m Find densely-connected blocks in a graph
m Deterministic: Strongly connected components (SCC)

m Puts any linked nodes into the same component
m Does not consider link density

m Probabilistic: Weighted stochastic block model (WSBM)
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m A topic model for link prediction
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A topic model for link prediction
Jointly models topics and links
Each topic is assigned a weight
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Relational Topic Model with Weighted Stochastic Block
Model
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Relational Topic Model with Weighted Stochastic Block
Model, Block Priors, Various Features, and Hinge Loss

Pr(By,s» = 1) = 0(Ry,a') (Sigmoid Loss)
—  Pr(Bgg) =exp(—2max (0,1 — By 4 Ry,4')) (Hinge Loss)

m Make more effective use of side information when inferring topics.
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LBH-RTM

Relational Topic Model with
m Lexical weights
m Block priors

m Hinge loss
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m Vanilla LDA: Infers topics based on words.

m Relational Topic Model with various features:
m Encourages linked docs to have similar topic distributions.
m Links indicate topic similarity.

m Weighted Stochastic Block Model:

m Does not understand the content at all.
m Finds blocks and provides informative priors.
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Datasets
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m Cora: Scientific papers and citation links

m WebKB: Web pages and hyperlinks

Corpus | #Docs | #Links | #Vocabulary
Cora 2,362 4,231 1,240
WebKB 877 1,608 1,703
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Task

m Training input: Training documents with links
m Test input: Test documents only
m Predict links within test documents

m Predict links from test documents to training documents
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Evaluation Metric

m Predictive link rank (PLR)
m For a document d, we compute and sort all other documents
by their link probabilities to d

m Then compute the average rank of actually linked documents
m PLR=(2+3+5)/3=3.33

Rank | Doc ID | Link Probability | True Link?
1 5 0.90
2 3 0.85 Yes
3 2 0.82 Yes
4 4 0.70
5 6 0.63 Yes
6 1 0.50
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m Strongly connected components
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Link Example

Using Fourier-Neural Recurrent Networks
to Fit Sequential Input/Output Data

Renée Koplon Eduardo D. Sontag
Dept. of Mathematics and Statistics Dept. of Mathematics
Wright State University Rutgers University
Dayton, Ohio 45435 New Brunswick, New Jersey 08903

Paper 1 [Koplon and Sontag, 1997]
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FOR NEURAL NETWORKS, FUNCTION DETERMINES FORM

Francesca Albertini
Eduardo D. Sontag
Department of Mathematics Rutgers University, New Brunswick, NJ 08903
E-mail: albertin@hilbert.rutgers.edu, sontag@hilbert.rutgers.edu

Paper 2 [Albertini and Sontag, 1992]
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Link Example — BS-RTM
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Summary

m LBH-RTM

m Topic model for link prediction

m Incorporate block priors from links

® Include lexical weights and hinge loss
m Future directions

m Directed/undirected links

m Binary/nonnegative real weight links

m Link suggestion
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