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» Iree prior encodes word associations in its structure. /\ /\ /\ I /\ / \ /\ I

. Words are encoded in leaves and can be reached dollar | | pounds | | pounds | | revenue | | Ibs| [ pounds | | pounds dollar | | pounds | | pounds | | revenue | | Ibs| | pounds | | pounds

from the root via paths (red and blue lines). 1.32E-3 2.06E-7 1.89E-5 1.87E-7 1.87E-8 1.87E-8 1.87E-8 2.00E-8 2.00E-8 2.19E-7 2.19E-7 2.20E-5 1.74E-4 2.00E-8

» tLDA topics are multinomial distributions over the

saths from the root to leaves. Top Words: president, people, clinton, myers, money Top Words: health, medical, disease, drug, cancer

Two-Level (2LV) Topic Coherence Classification
» Datasets: 20NewsGroups (20NG, left) and Amazon product Model Tree Path 20NG Amazon
/O\ reviews (right). BOW — — 86.64 §86.73
sport match » Associations: word2vec (W2V) and Dunning likelihood (G2). B0OW-+VEC - _ 86.59 87.30
el BN el » Metric: Average pairwise PMI value of models’ topics' top 10 LDA — — 86.6/ 86.99
sport || hockey || sports | | match [| matches || tournament spring || lake | | lake || river | |spring | [ summer] [ summer | | winter words, on Wikipedia reference corpus. Higher is better. LCTM — — 86.52 86.83
~ Every word matches an internal node. » Initialize every cluster with a word and its most ~ Baselines: LDA and latent concept topic model (LCTM). DA LV N 86.75  87.07
» Its child nodes are itself and the top /N words with associated word. Then applies HAC. » Summary: tLDA generally yields more coherent topics ‘ Y 86./3 37.13
the highest association scores with the word. » A word with multiple senses can be assigned to quantitatively. LCTM performs too poorly to be included (W2V) HAC - 80.79  8/.19
multiple clusters close to its senses. » For topic words and qualitative analysis, see the paper. HAC-LD N 80.73  87.02
Hierarchical Agglomerative Clustering (HAC) TOpIC Coherence Y 86.94 86.88
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TLDA-G2-HAC : TLDA-G2-HAC HACLD N 86.73  87.07

Y 86.91 86.94
» 20N G: Multi-class SVM classification.

Documents’ groups are their labels.

» Amazon: Binary SVM classification. 4-5
stars are positive and 1-2 stars are negative.

satellite orbit communications | | launch pad | [ launching

» Every word is initially assigned to a cluster.

» Then repeatedly merges the two clusters with the s Ol - | TLDA-W2V-HAC-LD |

highest average pairwise association score.
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