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Introduction

Topic Models
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Introduction

Topics Differ among Languages

� In the same geographic area, e.g., London:

� Spanish: Chaos in Catalonia
� Chinese: “Trade War” with the U.S.
� English: Brexit deals

� On the same topic, e.g., Earthquake:

� English: Earthquakes worldwide
� Chinese: Earthquake in Sichuan Province in 2008

� When modeling topics multilingually, it is not a good idea to
assume an aligned topic space.

� Keep the topics of different languages separated and connect them
by weighted topic links.
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Multilingual Topic Model for Learning Weighted Topic Links

Weighted Topic Links

� Each language’s topic distributions consist of the words in that
language only.

� Weighted topic links connect topics across languages.
� Weighted topic links are learned based on word translations.
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Multilingual Topic Model for Learning Weighted Topic Links

Why Weighted Topic Links?

� Transfer learned topic distributions from one language to another
as prior knowledge

Topic 

Distributions

English Chinese

� Improve topic quality on a low-resource language with a
high-resource one

Topic 

Distributions

High-Resource Language Docs

Low-Resource 

Language Docs
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Multilingual Topic Model for Learning Weighted Topic Links

Learning Weighted Topic Links

� Weighted topic links are learned from translation pairs’ topic
distributions.

� For a pair of topics, if they receive high weights in the translation
pair’s topic distributions

, they are likely to be corresponding topics.

� We use two matrices ρEN→ZH and ρZH→EN to learn the topic
relationships.

sports

运动
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Multilingual Topic Model for Learning Weighted Topic Links

Multilingual Topic Model Details

� Two separate LDA generate the
documents in languages S and T .

� The posterior regularizer Ψ encodes
translation information.

� We optimize Ψ to minimize the topic
distribution distances of translation pairs
after transformation.

Ψ =

(
C∏

c=1

[Dis (ΩS,c ,ρT→SΩT ,c)]ηc

)−1
×

(
C∏

c=1

[Dis (ρS→TΩS,c ,ΩT ,c)]ηc

)−1
(1)

� The distance function can be Euclidean
distance, KL divergence, etc.

� Each translation pair can also be weighted.

T

S

T

SS

dTN ,
TD

TK

SK

dSN ,
SD

dT , ndTz ,, ndTw ,,

dS , ndSz ,, ndSw ,,

T

ST TS
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Experiments | Classification

Classification

� Datasets
� Wikipedia (English/Chinese): Six-class classification of document

categories
� LORELEI (English/Sinhalese): Binary classification of need types

� Baselines

� LDA which runs monolingually (Blei et al., 2003)
� Multilingual Cultural-common Topic Analysis (Shi et al., 2016, MCTA)
� Multilingual Anchoring (Yuan et al., 2018, MTAnchor)
� Tree LDA with tree priors of a word translation dictionary (Hu et al.,

2014, tLDA)

� All multilingual baselines assume aligned topic spaces.
� Translation pair weighting

� Equal weights
� TF-IDF weights
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Experiments | Classification

Intra-Lingual Classification Results

� Train and test classifiers on the same language.

Dataset Method EN SI/ZH

LORELEI

MCTA 12.99 26.53
MTAnchor 20.78 32.65
LDA 27.78 24.01
tLDA 12.77 18.18
MTM 42.86 23.08
MTM + TF-IDF 26.67 38.10

Wikipedia

MCTA 51.56 33.35
MTAnchor 80.71 75.33
LDA 92.08 83.37
tLDA 91.58 83.33
MTM 92.98 86.48
MTM + TF-IDF 94.07 85.59
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Experiments | Classification

Cross-Lingual Classification Results

� Classifies on another language

Dataset Method EN SI/ZH

LORELEI

MCTA 4.08 15.58
MTAnchor 24.49 24.68
LDA 22.86 21.05
tLDA 16.01 15.09
MTM 22.22 26.67
MTM + TOP 35.29 33.33
MTM + TF-IDF 14.46 15.09
MTM + TF-IDF + TOP 14.46 11.43

Wikipedia

MCTA 23.24 39.79
MTAnchor 57.62 54.54
LDA 16.52 10.46
tLDA 2.85 21.02
MTM 74.69 64.48
MTM + TOP 78.13 83.08
MTM + TF-IDF 57.27 55.06
MTM + TF-IDF + TOP 63.20 59.64
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Experiments | Classification

Selected Topics

Model Lang. Words

MCTA ZH 主演 (starring), 改编 (adapt), 本 (this), 小说 (novel),
拍摄 (shoot), 角色 (role), 战士 (fighter)

EN dog, san, movie, mexican, fighter, novel, california

MTAnchor ZH 主演 (starring), 改编 (adapt), 饰演 (act), 本片 (this movie),
演员 (actor), 编剧 (playwright), 讲述 (narrate)

EN kong, hong, movie, official, martial, box, reception

LDA ZH 电影 (movie), 部 (movie quantifier), 美国 (USA),
上映 (release), 英语 (English), 剧情 (plot), 片 (movie)

EN film, star, direct, release, action, plot, character

tLDA ZH 电影 (movie), 胶片 (film), 星 (star), 动作 (action),
释放 (release), 影片 (movie), 剧情 (plot)

EN film, star, direct, action, release, plot, write

MTM ZH 电影 (movie), 部 (movie quantifier), 上映 (release),
动画 (animation), 故事 (story), 作品 (works), 英语 (English)

EN film, direct, star, release, action, plot, production

MTM +
TF-IDF

ZH 电影 (movie), 部 (movie quantifier), 上映 (release),
美国 (USA), 英语 (English), 导演 (director), 片 (movie)

EN film, direct, star, action, release, plot, movie
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Experiments | Classification

Selected Topic Links

� Most topics are linked based on mutual top words.
� For some topics, our MTM can even learn the links beyond words.

Lang. Weight Words

ZH-0 – 学名 (scientific name), 它们 (they), 呈 (show),
白色 (white), 长 (long), 黑色 (black), 厘米 (centimeter)

EN-12 0.57 specie, bird, eagle, genus, white, owl, black
EN-19 0.13 breed, chicken, white, goose, bird, black, list
EN-10 – album, release, record, music, song, single, feature

专辑 (album), 张 (album quantifier), 发行 (release),ZH-9 0.30
音乐 (music), 首 (song quantifier), 唱片 (record), 歌手 (singer)

ZH-17 0.20 音乐 (music), 乐团 (musical group), 艺术 (art),
创作 (create), 奖 (prize), 演出 (perform), 担任 (serve)

ZH-14 – 主义 (-ism), 组织 (organization), 美国 (USA), 革命 (evolution),
运动 (campaign), 政府 (government), 人民 (people)

EN-16 0.32 sex, law, act, sexual, marriage, court, legal
EN-11 0.17 traffic, victim, government, trafficking, child, force, country
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Experiments | Topic Coherence

Topic Coherence on Low-Comparability Data

� Bilingual Wikipedia corpora
� English
� Arabic, Chinese, Spanish, Farsi, and Russian

� Each language pair has two corpora.

� Partially comparable (PACO): 30% documents have direct translations
in the other language.

� Incomparable (INCO): No documents have direct translations.

� Baselines

� Monolingual LDA
� tLDA with tree priors of a word translation dictionary
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Experiments | Topic Coherence

Topic Coherence Results on Low-Comparability Data

� MTM mostly performs as well as monolingual LDA.

� Proves MTM’s robustness on low-comparability data.

� tLDA sacrifices topic coherence for topic alignment.
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Conclusions

Summary

� A multilingual topic model for learning weighted topic links
� Does not force topic alignment and only connects topics when

necessary
� Improves classification performance both intra- and cross-lingually

using the topic posteriors as features
� Gives coherent topics and meaningful topic links
� Robust when the data are less comparable or incomparable
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