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Abstract
I A topic model for link prediction using:

(1) Cluster priors.
(2) Seeding based on distributed representations.
(3) Lexical term weights.
(4) Max-margin learning criterion.

(1) Cluster Priors
I Clusters are identified from links, using strongly

connected component.

I Each cluster l has its own Dirichlet prior πl over its
topic distribution.

(2) Seeding
I Selected from high frequency words, using

word2vec representations.

I Cluster the words into K word-clusters using k-means.

I Within each topic k, compute each word’s skip-gram
transition probability sum to the other words.

I Select top three words as the seed words for topic k.

(3) Lexical Term Weights
I The regression value of document d and d′ is

Rd,d′ = ηT(zd ◦ zd′) + τ T(wd ◦ wd′).

- zd,k = 1
Nd

∑Nd

n=1 I [zd,n = k].

- wd,v = 1
Nd

∑Nd

n=1 I [wd,n = v].
- ◦ denotes the Hadamard product.

(4) Max-margin Learning
I We use hinge loss as the link prediction function Ψ

p(yd,d′ = 1) = exp(−2cmax(0, 1−Rd,d′)).

- c is the regularization parameter.
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A two-document segment of our model

1. For each document cluster l ∈ {1, . . . , L}
(a) Draw πl ∼ Dir(α′)

2. For each topic k ∈ {1, . . . , K}
(a) Draw word distribution φk ∼ Dir(β)
(b) Draw topic regression parameter ηk ∼ N (0, ν2)

3. For each word v ∈ {1, . . . , V }
(a) Draw lexical regression parameter τv ∼ N (0, ν2)

4. For each document d ∈ {1, . . . , D}
(a) Draw topic proportions θd ∼ Dir(απld)
(b) For each word td,n in document d

i. Draw a topic assignment zd,n ∼ Mult(θd)
ii. Draw a word td,n ∼ Mult(φzd,n)

5. For each linked pair of documents d and d′

(a) Draw link indicator yd,d′ ∼ Ψ(· |zd, zd′,wd,wd′,η, τ )

Examples
Strongly Connected Component Example

1

2

3

Each color denotes a component

Seed Word Transition Prob. Sum Example

wk,1 ... wk,i-1 wk,i wk,i+1 ... wk,N(k)

An example for the i-th word in topic k

Qualitative Example

@A: Just finished a TV 

play. Heading for Beijing 

now. Exhausted. @B

Mentioning link example

A BTopic 16

TV play, movie, song, 

music, program, 

director, drama

A and B share a common
interest in entertainment

Model PLR
%T16
A B

RTM 52 .141 .108
IS-RTM 40 .129 .112

Lex-IS-RTM 24 .157 .119
MED-RTM 40 .100 .094

IS-MED-RTM 26 .082 .099
Lex-IS-MED-RTM 26 .137 .139

I A is an actor and also interested
in food: meat, soup, popcorn,
roasted duck, snack, etc.

I B is a host and also interested in
sports: Olympic, badminton, gold
medal, champion, referee, etc.

Link Prediction: Predictive Link Rank
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I Dataset: Tweets from 2,000 Weibo users, with mentioning, retweeting and
following links.

I Task: Predicting links between held-out documents.

I Baseline: Relational Topic Model (RTM).

I Evaluation: Predictive link rank (lower is better).

I Prefixes:

- IS-: The model incorporates user interactions and seed words.
- Lex-: Lexical terms were included in the link probability function.
- MED-: Max-margin learning is applied.

Document Modeling
I Dataset: Same as link prediction.

I Task: Predicting held-out words in
documents using various links.

I Baseline: LDA and Markov Random Topic
Fields (MRTF).

I Split: Each document’s 80% tokens for
training. The rest for test.

I Evaluation: Perplexity (lower is better).

Model LDA MRTF I-LDA
Mentioning

2605.06
2582.08 2522.58

Retweeting 2588.30 2519.27
Following 2587.26 2530.67

I I-LDA incorporates user interactions, but
doesn’t predict links.

Link Prediction: Quantitative Analysis
Model RTM IS-RTM Lex-IS-RTM MED-RTM IS-MED-RTM Lex-IS-MED-RTM

Topic PMI ↑ 1.186 1.224 1.216 1.214 1.294 1.229
Avg Reg Linked/All ↑ 3.621 4.777 5.026 2.909 3.097 3.158
Values SD/Avg ↓ 0.9415 1.2081 1.2671 0.6364 0.7254 0.7353

I Topic PMI: Each topic’s top 20 words’ PMI value. Higher is better ↑.
I Linked/All: Ratio of linked pairs’ average regression values to all pairs’ values. Higher is better ↑.
I SD/All: Ratio of standard deviation to all pairs’ average regression values. Lower is better ↓.

Future Directions
I Introduce hierarchical topic models.

I Use other clustering methods to obtain clusters.
I Explore the predicted links for downstream tasks.

- Friend recommendation.
- Inference of user attributes.
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